Planktonic, benthic and sympagic copepods collected in the desalination unit during the XXXIVth Expedition of the Italian National Antarctic Program (PNRA)

Occurrence Specimen
Dernière version Publié par Test Organization #1 le sept. 7, 2023 Test Organization #1
Date de publication:
7 septembre 2023
Publié par:
Test Organization #1
Licence:
CC-BY 4.0

Téléchargez la dernière version de la ressource en tant qu'Archive Darwin Core (DwC-A), ou les métadonnées de la ressource au format EML ou RTF :

Données sous forme de fichier DwC-A (zip) télécharger 167 enregistrements dans Anglais (13 KB) - Fréquence de mise à jour: inconnue
Métadonnées sous forme de fichier EML télécharger dans Anglais (33 KB)
Métadonnées sous forme de fichier RTF télécharger dans Anglais (22 KB)

Description

Planktonic, benthic and sympagic copepods collected in the framework of the XXXIVth Expedition of the Italian National Antarctic Program (PNRA) is an occurrence type dataset published by Italian National Antarctic Museum (MNA, Section of Genoa).

Distributional data on planktonic, benthic and sympagic copepods collected in the framework of the XXXIVth Expeditions of the Italian National Antarctic Program (PNRA) to the Ross Sea sector from 2018-2019 are provided here. These occurrences correspond to specimens collected from the 25 μm filters used in the desalination plant of the Italian research station "Mario Zucchelli" (MZS), located in the Terra Nova Bay area (TNB; Ross Sea, Antarctica). This dataset is a contribution to the Antarctic Biodiversity Portal, the thematic Antarctic node for both the Ocean Biogeographic Information System (AntOBIS) and the Global Biodiversity Information Facility Antarctic Biodiversity Information Facility (ANTABIF) (http://www.biodiversity.aq). The dataset was uploaded and integrated with the SCAR-AntOBIS database (the geospatial component of SCAR-MarBIN), under the licence CC-BY 4.0. Please follow the guidelines from the SCAR Data Policy (ISSN 1998-0337) when using the data. If you have any questions regarding this dataset, please contact us via the contact information provided in the metadata or via data-biodiversity-aq@naturalsciences.be. Issues with dataset can be reported at https://github.com/biodiversity-aq/data-publication/

We describe the diversity of marine copepods of Terra Nova Bay (TNB) sampled by the filters installed in the desalination unit (DU) of the Italian research station "Mario Zucchelli". The opening of the intake pipe of the DU is positioned at a depth of 4 meters and allowed a total of 2,116 specimens to be sampled and recognized. In addition, new occurrence records of copepod genera and species are reported in the same zone. We provide an overview of the marine copepods diversity reported for TNB. The total 2,116 individuals correspond to 14 genera and 15 species and are represented by 167 occurrence records in this dataset. Around 52% of the total number of species are new records for the TNB area are reported in this dataset. The publication of this data paper was funded by the Belgian Science Policy Office (BELSPO, contract n°FR/36/AN1/AntaBIS) in the Framework of EU-Lifewatch as a contribution the the SCAR Antarctic biodiversity portal (biodiversity.aq)

Enregistrements de données

Les données de cette ressource occurrence ont été publiées sous forme d'une Archive Darwin Core (Darwin Core Archive ou DwC-A), le format standard pour partager des données de biodiversité en tant qu'ensemble d'un ou plusieurs tableurs de données. Le tableur de données du cœur de standard (core) contient 167 enregistrements.

Cet IPT archive les données et sert donc de dépôt de données. Les données et métadonnées de la ressource sont disponibles pour téléchargement dans la section téléchargements. Le tableau des versions liste les autres versions de chaque ressource rendues disponibles de façon publique et permet de tracer les modifications apportées à la ressource au fil du temps.

Versions

Le tableau ci-dessous n'affiche que les versions publiées de la ressource accessibles publiquement.

Comment citer

Les chercheurs doivent citer cette ressource comme suit:

The Scientific Committee on Antarctic Research. (2023). SCAR Report 42 - September 2022 - SCAR Data Policy (2022). Zenodo.

Droits

Les chercheurs doivent respecter la déclaration de droits suivante:

L’éditeur et détenteur des droits de cette ressource est Test Organization #1. Ce travail est sous licence Creative Commons Attribution (CC-BY) 4.0.

Enregistrement GBIF

Cette ressource a été enregistrée sur le portail GBIF, et possède l'UUID GBIF suivante : 7c70963a-ebf9-462e-b9d5-f8e16ccc9534.  Test Organization #1 publie cette ressource, et est enregistré dans le GBIF comme éditeur de données avec l'approbation du GBIF Secretariat.

Mots-clé

Occurrence; Specimen; COPEPODA; TERRA NOVA BAY; ROSS SEA; ZOOPLANKTON; COASTAL COPEPODA; DESALINATION UNIT

Contacts

Marco Grillo
  • Fournisseur Des Métadonnées
  • Créateur
  • Personne De Contact
Department of Physical Sciences, Earth and Environment (DSFTA) - University of Siena & Italian National Antarctic Museum (MNA, Section of Genoa)
IT
Guido Bonello
  • Créateur
Italian National Antarctic Museum (MNA, section of Genoa)
IT
Matteo Cecchetto
  • Créateur
Department of Earth, Environmental and Life Sciences (DISTAV) - University of Genoa & Italian National Antarctic Museum (MNA, Section of Genoa)
IT
Alice Guzzi
  • Créateur
Department of Earth, Environmental and Life Sciences (DISTAV) - University of Genoa & Italian National Antarctic Museum (MNA, Section of Genoa)
IT
Nicholas Noli
  • Créateur
Department of Physical Sciences, Earth and Environment (DSFTA) - University of Siena & Italian National Antarctic Museum (MNA, Section of Genoa)
IT
Cometti Valentina
  • Créateur
Department of Earth, Environmental and Life Sciences (DISTAV) - University of Genoa
IT
Stefano Schiaparelli
  • Fournisseur Des Métadonnées
  • Créateur
  • Personne De Contact
Italian National Antarctic Museum (MNA, section of Genoa) & Department of Earth, Environmental and Life Sciences (DISTAV) - University of Genoa
IT
Yi-Ming Gan
  • Fournisseur Des Métadonnées
  • Personne De Contact
Royal Belgian Institute of Natural Sciences
BE

Couverture géographique

The desalination plant (-74.6936 Latitude; 164.1185 Longitude), connected to the Italian research base "Mario Zucchelli" (Terra Nova Bay, Ross Sea), is located at a depth of 4 m in the locality of "Punta Stocchino".

Enveloppe géographique Sud Ouest [-74,694, 164,119], Nord Est [-74,694, 164,119]

Couverture taxonomique

N/A

Kingdom Animalia
Phylum Arthropoda
Class Copepoda
Order Calanoida, Cyclopoida, Harpacticoida
Family Metridinidae, Peltidiidae, Calanidae, Laophontidae, Dactylopusiidae, Hemicyclopinidae, Stephidae, Ancorabolidae, Oithonidae, Harpacticidae, Ameiridae, Tisbidae, Acartiidae

Couverture temporelle

Date de début / Date de fin 2018-12-29 / 2019-02-02

Données sur le projet

The research project has as its objective the study of the biodiversity of the main marine, limnic and terrestrial habitats presented in Terra Nova Bay through the examination of samples collected with quantitative methods and analyzed with innovative methodologies of barcoding and metabarcoding. The objectives were the following: Metabarcoding of marine and terrestrial organisms and barcoding on individuals: The samples of marine organisms were processed to know the qualitative composition of sympathetic microalgae, qualitative-quantitative analysis of phytoplankton, morphological and ultrastructural analyses. Furthermore, some samples were stored at -20°C to then carry out barcoding and metabarcoding analyses. Analysis of the filters of the desalination plants: The size fractions of zoo- and phytoplankton that had been filtered by the desalination plant of the Italian research base "Mario Zucchelli" were sampled. On these samples they were destined for metabarcoding analyses. In parallel to the samplings for the metabarcoding, the walls of the filters were scratched in order to obtain algal and metazoan organisms which were placed in culture at 4°C. The algal strains thus obtained will be of great help in both the genetic and morphological characterization of the species that will result from the metabarcoding analyses, while the metazoans will be analyzed taxonomically.

Titre TNB-CODE, Terra Nova Bay barCODing and mEtabarcoding of Antarctic organisms from marine and limno-terrestrial environments
Identifiant 2016/AZ1.17
Financement This project is funded by the PNRA. Grant number: Progetto PNRA 16_00120

Méthodes d'échantillonnage

Samples were collected using the DU plant of MZS, whose intake pipe is located at 4 meters of depth in the locality of “Punta Stocchino” (Fig. 1). This plant is used to provide freshwater to the research base activities, operating during the entire expedition’s summer season, generally from mid-October, to the beginning of February. From the seawater intake pipe, a series of pipes and valves allow the water to flow to the main structure of the plant, located inside the research station, where the first steps of filtration (called “pre-filtration”) are conducted. These steps consist of a series of disposable filters positioned sequentially with decreasing mesh size. The first one is packed with anthracite, followed by polyester bag filters of 25 μm mesh size, and, finally, by polypropylene cartridges of 5 μm mesh size. The samples reported in this dataset were obtained from the biological material recovered by the 25 μm mesh size filters. More information on the technical specifications of the MZS DU plant can be found in (Cecchetto et al. 2021).

Etendue de l'étude This dataset describes the abundance and distribution of species of copepoda of the XXXIVth PNRA at Terra Nova Bay (Ross Sea, Antarctica) between 24 December 2018 to 02 February 2019.
Contrôle qualité All records were validated. Coordinates were plotted on map to verify the actual geographical location. All scientific names were checked for typo and matched to the species information backbone of Worlds Register of Marine Species (http://marinespecies.org/) and LSID were assigned to each taxa as scientificNameID. Event dates are compliant to ISO 8601 standard.

Description des étapes de la méthode:

  1. The 25 μm mesh size filters are frequently replaced by the DU plant’s technician as soon as the pressure inside the filter housing reaches warning levels to prevent the clogging of the system. After removing the filters from their respective housing, the same were transported to the laboratory, and processed following Cecchetto et al. 2021 and Cecchetto et al. 2022. Briefly, the filters, after removing the metal ring placed at the opening of the filter, were cut longitudinally in order to access its content, i.e. the biological material filtered. Using a scalpel with sterilized, disposable blades, different cuts were performed in different positions of the filter and stored at -20°C, obtaining pieces of the filter that would later be used for metagenomic research purposes. From the remaining parts of the filter, depending on the amount of biological material present on the filter’s surface, a volume of different 15ml falcon tubes of material were scooped from the filter’s surface, using a sterilized spatula, The falcon tubes were then brought to volume with 96% ethanol. The falcon tubes contained a mix of phytoplanktonic and zooplanktonic organisms in different ratios, depending on the biological community that was present in the water column facing the DU intake pipe during the filters’ operative time. The samples, stored at +4°C, were shipped to the MNA (Genoa section) laboratories, where the content of the falcon tubes was sorted and analyzed.
  2. The collected copepods were counted. and the taxonomic investigation, performed by Guido Bonello and Marco Grillo was performed to the lowest possible level and based upon historic and recent bibliography (Boxshall e Halsey 2004; Bonello et al. 2020). The online portal World Registry of Marine Species (WoRMS), Banyuls sur Mer marine Copepoda database (Razouls et al. 2022); https://copepodes.obs-banyuls.fr) was used to confirm acceptance of species names. When identification was inconclusive, only genus or family names were assigned. For the copepods recognized in this checklist, specimen selections were made to produce high-resolution images, useful for highlighting morphological characters for species classification. Various acquisition techniques were performed to obtain these photos. Scanning electron microscopy (SEM) and fluorescence microscopy employed different coloration with Congo Red and Fuchsin (Michels e Büntzow 2010; Ivanenko et al. 2012).
  3. The original unsorted plankton matrix is stored in 96% ethanol, and also at -20°C. The copepod specimens, splitted, sorted and identified, are in 96% ethanol or fixed on a slide and permanently deposited in the biological collection of the MNA.
  4. A metabarcoding methodology was also applied to the DU plant’s filters, and only some preliminary and qualitative results are reported here. Specifically, the relative abundance of 18S rRNA sequences identified by the taxonomic identification of the metabarcoding protocol as copepods in respect to the total amount of sequences (Fig. 3) are here reported only to illustrate the temporal dynamics that could be discerned by the metabarcoding approach during the sampling period.

Citations bibliographiques

  1. Bonello, Guido, Marco Grillo, Matteo Cecchetto, Marina Giallain, Antonia Granata, Letterio Guglielmo, Luigi Pane, Stefano Schiaparelli. 2020. «Distributional records of Ross Sea (Antarctica) planktic Copepoda from bibliographic data and samples curated at the Italian National Antarctic Museum (MNA): checklist of species collected in the Ross Sea sector from 1987 to 1995». ZooKeys 969: 1.
  2. Boxshall, Geoffrey Allan, e Sheila H. Halsey. 2004. An introduction to copepod diversity. Ray Society.
  3. Cecchetto, Matteo, Andrea Di Cesare, Ester Eckert, Giulia Fassio, Diego Fontaneto, Isabella Moro, Marco Oliverio, et al. 2021. «Antarctic Coastal Nanoplankton Dynamics Revealed by Metabarcoding of Desalination Plant Filters: Detection of Short-Term Events and Implications for Routine Monitoring». Science of The Total Environment 757 (febbraio): 143809. https://doi.org/10.1016/j.scitotenv.2020.143809.
  4. Cecchetto, Matteo, Andrea Di Cesare, Ester Eckert, Isabella Moro, Diego Fontaneto, Stefano Schiaparelli. 2022. «A Metabarcoding Protocol to Analyze Coastal Planktic Communities Collected by Desalination Plant Filters: From Sampling to Bioinformatic Exploratory Analyses». In Marine Genomics: Methods and Protocols, 151–76. Springer.
  5. Ivanenko, Viatcheslav N., Paulo HC Corgosinho, Frank Ferrari, Pierre-Marie Sarradin, e Jozee Sarrazin. 2012. «Microhabitat distribution of Smacigastes micheli (Copepoda: Harpacticoida: Tegastidae) from deep-sea hydrothermal vents at the Mid-Atlantic Ridge, 37° N (Lucky Strike), with a morphological description of its nauplius». Marine Ecology 33 (2): 246–56.
  6. Michels, Jan, e M. Büntzow. 2010. «Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes». Journal of Microscopy 238 (2): 95–101.
  7. Razouls, S., N Desreumaux, J Kouwenberg, e F de Bovée. 2022. «Diversity and geographic distribution of marine planktonic copepods». http://copepodes.obs-banyuls.fr/en.

Métadonnées additionnelles