macroalgae_Johor

Occurrence
Dernière version publié le 1 mars 2022
Date de publication:
1 mars 2022
Publié par:
No organisation
Licence:
CC0 1.0

Téléchargez la dernière version de la ressource en tant qu'Archive Darwin Core (DwC-A), ou les métadonnées de la ressource au format EML ou RTF :

Données sous forme de fichier DwC-A (zip) télécharger 37 enregistrements dans Anglais (8 KB) - Fréquence de mise à jour: inconnue
Métadonnées sous forme de fichier EML télécharger dans Anglais (23 KB)
Métadonnées sous forme de fichier RTF télécharger dans Anglais (16 KB)

Description

This data provides a description of the east coast shore of Peninsular Malaysia, specifically in Johor coast in 2015-2016. The spatial and temporal distribution and abundance of a total of 41 taxa were assessed at 4 monsoon-exposed locations.

Enregistrements de données

Les données de cette ressource occurrence ont été publiées sous forme d'une Archive Darwin Core (Darwin Core Archive ou DwC-A), le format standard pour partager des données de biodiversité en tant qu'ensemble d'un ou plusieurs tableurs de données. Le tableur de données du cœur de standard (core) contient 37 enregistrements.

Cet IPT archive les données et sert donc de dépôt de données. Les données et métadonnées de la ressource sont disponibles pour téléchargement dans la section téléchargements. Le tableau des versions liste les autres versions de chaque ressource rendues disponibles de façon publique et permet de tracer les modifications apportées à la ressource au fil du temps.

Versions

Le tableau ci-dessous n'affiche que les versions publiées de la ressource accessibles publiquement.

Comment citer

Les chercheurs doivent citer cette ressource comme suit:

AlgaeBase. https://www.algaebase.org/search/species/detail/?species (Latest accessed date: 29 November 2021)

Droits

Les chercheurs doivent respecter la déclaration de droits suivante:

En vertu de la loi, l'éditeur a abandonné ses droits par rapport à ces données et les a dédié au Domaine Public (CC0 1.0). Les utilisateurs peuvent copier, modifier, distribuer et utiliser ces travaux, incluant des utilisations commerciales, sans aucune restriction.

Enregistrement GBIF

Cette ressource n'a pas été enregistrée sur le portail GBIF

Mots-clé

Occurrence; Specimen

Contacts

Nur Farah Ain Zainee
  • Fournisseur Des Métadonnées
  • Créateur
  • Utilisateur
  • Personne De Contact
Postdoctoral Researcher
Universiti Kebangsaan Malaysia
School of Earth Science & Environment
43600 Bandar Baru Bangi
Selangor
MY
+601129010254

Couverture géographique

Sampling was done along four major shore stretches of the entire coast of east Johor, covering approximately 180 km from Desaru to Mersing. The eastern coast of Johor extends approximately 175 km from Teluk Lipat (i.e. Lipat Bay) to the north, and Teluk Ramunia to the south.

Enveloppe géographique Sud Ouest [-90, -180], Nord Est [90, 180]

Couverture taxonomique

We report the identification of species belonging to family Rhodomelaceae, Lithophyllaceae, Corallinaceae, Pterocladiaceae, Gigartinaceae, Galaxauraceae, Gracilariaceae, Cystocloniaceae, Lomentariaceae, Dictyotaceae, Sargassaceae, Polyphysaceae, Caulerpaceae, Cladophoraceae, Boodleaceae, Ulvaceae, and Valoniaceae.

Genus Chaetomorpha Kützing, 1845
Species Caulerpa racemosa ((Forsskål) J.Agardh, 1873), Cladophoropsis membranacea ((Hofman Bang ex C.Agardh) Børgesen, 1905), Cladophora stimpsonii (Harvey, 1860), Cladophora vagabunda ((Linnaeus) Hoek, 1963), Valonia aegagropila (C.Agardh, 1823), Acetabularia acetabulum ((Linnaeus) P.C.Silva, 1952), Ulva clathrata ((Roth) C.Agardh, 1811), Ulva intestinalis (Linnaeus, 1753), Dictyopteris delicatula (J.V.Lamouroux, 1809), Canistrocarpus cervicornis ((Kützing) De Paula & De Clerck, 2006), Dictyota mertensii ((C.Martius) Kützing, 1859), Dictyota dichotoma ((Hudson) J.V.Lamouroux, 1809), Padina australis (Hauck, 1887), Padina boergesenii (Allender & Kraft, 1983), Padina minor (Yamada, 1925), Sargassum oligocystum (Montagne, 1845), Sargassum paniculatum (J. Agardh, 1848), Sargassum polycystum (C. Agardh, 1824), Sargassum microcystum (J.Agardh, 1848), Sargassum tenerrimum (J.Agardh, 1848), Acanthophora muscoides ((Linnaeus) Bory de Saint-Vincent, 1828), Acanthophora spicifera ((M.Vahl) Børgesen, 1910), Polysiphonia coacta (C.K.Tseng, 1944), Amphiroa fragilissima ((Linnaeus) J.V.Lamouroux, 1816), Jania adhaerens (J.V.Lamouroux, 1816), Pterocladiella caloglossoides ((M.Howe) Santelices, 1998), Chondrus crispus (Stackhouse, 1797), Hypnea cervicornis (J.Agardh, 1851), Hypnea spinella ((C.Agardh) Kützing, 1847), Gracilaria arcuata (Zanardini, 1858), Gracilaria bursa-pastoris ((S.G.Gmelin) P.C.Silva, 1952), Crassiphycus changii ((B.-M.Xia & I.A.Abbott) Gurgel, J.N.Norris & Fredericq, 2018), Gracilaria coronopifolia (J.Agardh, 1852), Gracilaria salicornia ((C.Agardh) E.Y.Dawson, 1954), Galaxaura rugosa ((J.Ellis & Solander) J.V.Lamouroux, 1816), Ceratodictyon intricatum ((C.Agardh) R.E.Norris, 1987)

Méthodes d'échantillonnage

Sampling was done from January 2015 until February 2016 during the lowest tide of the month (Table 1). Transects were placed randomly, taken to represent the macroalgae cover and frequency at each site. The quadrats were placed alternately at every 1 meter of the 25-meter transect line. Initially, the macroalgae that were found inside the quadrat were recorded, identified and inventoried according to the type of species, percentage of cover and percentage of frequency (Table 2). The types of substratum attached by macroalgae were noted as representing the habitat specificity of the macroalgae (Table 3). The raw data of cover and frequency were calculated by multiplying the vertical count of every species to the five levels of multiplier and total number of sub-quadrat from the 9 transect lines with a total of 234 quadrats (Supplementary Table-S1, S2, S3 and S4). The cover of every species of macroalgae was then analysed by summing the percentage cover value of prostrate and erect parts of the macroalgae in each sub-quadrat (10cm × 10cm) after Saito and Atobe (1970) (Supplementary Table S5). The percentage frequency of macroalgae was obtained by calculating the total number of squares (qn) in which the species occurred, divided by the total number of small squares in the quadrat (= 25), and multiplied by 100 (Supplementary Table-S1, S2, S3 and S4).

Etendue de l'étude Sampling activity was conducted in four locations in eastern Johor coastline: Pantai Pasir Lanun, Pulau Mawar, Telok Gorek and Tanjung Lompat (Figure 1). Pantai Pasir Lanun is located at the tip of a foreland with a relatively straight coastline, predominantly featuring hard substrates composed of large areas of coral rubble and boulders. Pulau Mawar is characterised by a shallow-elevated sandy terrain with small patches of mangrove trees and coral rubble. Telok Gorek is located within an indented bay, covered with mangrove trees and sheltered from the foreland. Tanjung Lompat consists of a foreland and an extensive bay, characterised by boulder-pebbles on the foreland and a shallow sandy bay.
Contrôle qualité All scientific names were morphologically identified according to Ismail (1995), Trono and Ganzon-Fortes (1988), Zainee et al. (2018), and Zainee et al. (2019a), and were further standardised according to AlgaeBase and The World Register of Marine Species (WoRMS).

Description des étapes de la méthode:

  1. The step that led to the final release of the dataset were as follows: (1) In-situ identification of species and destructive collection for first-time observed samples and preservation in formaldehyde; (2) Non-destructive sampling (except for filamentous algae that need microscopic observation in the laboratory) at four study sites; (3) photography, sorting, cleaning and preparation of herbarium specimens; (4) conversion of paper-based records from the field and laboratory into an electronic data format (Excel spreadsheets); (5) organising of the datasets into a standardised format; (6) standardisation of taxonomy using the World Register of Marine Species; (8) export of data as a DarwinCore Archive and (9) generation of dataset-level metadata.

Données de collection

Nom de la collection Plantae
Méthode de conservation des spécimens Dried and pressed

Citations bibliographiques

  1. Ismail A (1995) Rumpai Laut Malaysia. Dewan Bahasa dan Pustaka, Kuala Lumpur
  2. Kendrick G, Harvey ES, Wernberg T, Harman N, Goldberg N (2004) The role of disturbance in maintaining diversity of benthic macroalgal assemblages in southwestern Australia. Journal of Phycolology 52: 5–9.
  3. Kim HH, Ko YW, Yang KM, Sung G, Kim JH (2017) Effects of disturbance timing on community recovery in an intertidal habitat of a Korean rocky shore. Algae 32 (4): 325–336. doi:10.4490/algae.2017.32.12.7.
  4. Kroeker KJ, Bell LE, Donham EM, Hoshijima U, Lummis S, Toy JA, Willis-Norton E (2020) Ecological change in dynamic environments: Accounting for temporal environmental variability in studies of ocean change biology. Global Change Biology 26 (1): 54–67. doi:10.1111/gcb.14868.
  5. Lindenmayer DB, Fischer J (2007) Tackling the habitat fragmentation panchreston. Trends in Ecology and Evolution 22 (3): 127–132. doi:10.1016/j.tree.2006.11.006.
  6. Prathep A, Mayakun J, Tantiprapas P, Darakrai A (2008) Can macroalgae recover 13 months after the 2004 Tsunami?: A case study at Talibong Island, Trang Province, Thailand. Journal of Applied Phycology 20: 907–914. doi:10.1007/978-1-4020-9619-8_55.
  7. Saito Y, Atobe S (1970) Phytosociological study of intertidal marine algae:I. Usujiri Benten-Jima, Hokkaido. Bulletin of the Faculty of Fisheries Hokkaido University 21 (2): 37–69.
  8. Satari SZ, Zubairi YZ, Hussin AG, Hassan SF (2015) Some statistical characteristic of Malaysian wind direction recorded at maximum wind speed: 1999-2008. Sains Malaysiana 44 (10): 1521–1530. doi:10.17576/jsm-2015-4410-18.
  9. Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19: 46–53. doi:10.1016/j.tree.2003.10.005.
  10. Trono GC, Ganzon-Fortes E (1988) Philippine Seaweeds. National Book Store Inc, Manila.
  11. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91 (10): 2833–2849. doi:10.1890/10-0097.1.
  12. Wilson SS, Furman BT, Hall MO, Fourqurean JW (2020) Assessment of Hurricane Irma impacts on South Florida seagrass communities using long-term monitoring programs. Estuarine and Coasts 43 (5): 1119–1132. doi:10.1007/s12237-019-00623-0
  13. World Register of Marine Species –WoRMS. http://www.marinespecies.org/aphia.php?p=taxdetails&id (Latest accessed date: 29 November 2021)
  14. Zainee NFA, Rozaimi M (2020) Influence of monsoonal storm disturbance on the diversity of intertidal macroalgae along the eastern coast of Johor (Malaysia). Regional Studies in Marine Science 40(101481) https://doi.org/10.1016/j.rsma.2020.101481.
  15. Zainee NFA, Ibrahim N, Ismail A (2019a) Rumpai Laut Johor. UKM Press, Bandar Baru Bangi.
  16. Zainee NFA, Ismail A, Taip ME, Ibrahim N, Ismail A (2018) Diversity, distribution and taxonomy of Malaysian marine algae, Halimeda (Halimedaceae, Chlorophyta). Malayan Nature Journal 70 (2): 211–219.
  17. Zainee NFA, Ismail A, Taip ME, Ibrahim N, Ismail A (2019b) Habitat preference of seaweeds at a tropical island of southern Malaysia. Songklanakarin Journal of Science and Technology 41 (5): 1171–1177.

Métadonnées additionnelles